LearnMate 7.3.2 Demo Site



    Available courses

    The Bearing Service Cart (ME13) is a stand-alone mobile training station for installing, removing and servicing plain and roller bearings. Bearing Service (ME13) presents the working principles of bearings the most effective way: using the same industrial-strength components used in factory environments. Students learn the principles of proper bearing service and work with a bearing packer, bearing pullers, an arbor press, grease gun and various bearing types. 

    [Catalog Number 77-ME13-0001]
    [Ver: 2.0.0.0]

    This module is the third in the series of Pneumatics Technology modules, which enable students to grasp the fundamentals of pneumatic and electro-pneumatic controlled systems (pneumatic systems controlled electrically) commonly used in modern automated manufacturing environments. Virtual and hands-on activities challenge students to design and build pneumatic circuits with simulation software and actual components. In this module, students are exposed to the function and operation of electric/electro-pneumatic components such as switches, relays, timers, electrical push buttons, solenoid operated valves and proximity sensors. Using graphic simulations and animations, students create, modify, operate and observe simulated pneumatic and electro-pneumatic devices and circuits. Students connect different components, change physical parameters and observe system responses.

    Catalog Number: 77-8070-0030

    [v 1.1.0.2]

    The Pneumatics Technology 1 module introduces the principles of pneumatics and pneumatically controlled systems commonly used in automated manufacturing environments.

    This module features pneumatic simulation software that allows you to create, modify, operate and observe simulated industrial grade pneumatic and electro-pneumatic devices and circuits. You connect different components, change physical parameters and observe system responses.

    The module emphasizes basic skills in operating simulation software and industrial components. This module also includes applied science experiments to demonstrate the physical principles of air power.

    Catalog number: 77-8070-0010
    [Ver: 1.1.2.4]

    The Pneumatics Technology 2 module introduces students to advanced principles and components of pneumatics and pneumatically controlled systems commonly used in automated manufacturing environments. Students are also introduced to timing diagrams and the logic functions AND and OR, and implement them in pneumatic circuits.

    Students create, modify, operate and observe simulated pneumatic devices and circuits. Students test and troubleshoot pneumatic circuits by connecting components, changing physical parameters and observing system responses. The module focuses on pneumatics circuits and industrial applications.


    Catalog number: 77-8070-0020

    [v 1.1.0.2]

    The Hydraulics Technology modules introduce students to the principles of hydraulics and the use of fluid power in automated manufacturing environments. In these modules, students use software to create, modify, operate and observe simulated hydraulic and electro-hydraulic devices and circuits. Students also use a hydraulics training panel with a wide assortment of industrial grade hydraulic components.

    In Hydraulics Technology 3: Advanced Hydraulics and Electro-hydraulics, students are exposed to the function and operation of advanced components and circuits involving switches, relays, timers, electrical push buttons, solenoid operated valves and proximity sensors. In addition, students learn the critical skill of how to connect circuits by reading schematic diagrams.

    Catalog number: 77-8071-0030
    [Ver: 1.1.0.2]

    The Hydraulics Technology modules introduce students to the principles of hydraulics and the use of fluid power in automated manufacturing environments. In these modules, students use software to create, modify, operate and observe simulated hydraulic and electro-hydraulic devices and circuits. Students also use the hydraulics training panel with a wide assortment of industrial grade hydraulic components.

    Hydraulics Technology 2 focuses on electro-hydraulics, using a computer interface control unit to enable software control and online graphic tracking of the hydraulics panel. Electro-hydraulic systems use electrical circuits to operate hydraulic components.

    Catalog number 77-8071-0020
    [Ver: 1.1.0.2]

    The Hydraulics Technology modules introduce students to the principles of hydraulics and the use of fluid power in automated manufacturing environments. In these modules, students use software to create, modify, operate and observe simulated hydraulic and electro-hydraulic devices and circuits. Students also use the hydraulics training panel with a wide assortment of industrial grade hydraulic components.

    Students connect components on the panel in order to control a variety of typical industrial hydraulic applications. Students connect different components, change physical parameters and observe system responses. The combination of software and industrial equipment allows students to test and troubleshoot simulated circuits before hardware connections are made.

    In the hydraulics module students design solutions for industrial hydraulic applications with emphasis on real industrial concerns, such as power losses across components, system overheating and optimized hydraulic power. Hydraulics Technology 1 emphasizes the use of simulation software and the design of basic hydraulic circuits. This module also includes applied science experiments to demonstrate the physical principles of fluid power.

    Catalog number: 77-8071-0010
    [Ver: 1.2.0.2]

    This module is designed to equip the student with a solid grounding and broad knowledge of a wide range of aspects of fluid mechanics and dynamics. Activity 1 introduces the student to the properties of fluids. Activities 2, 3 and 4 deal with static fluids, and cover topics such as hydrostatic forces, pressure measurement and buoyancy. Activities 5, 6 and 7 cover the fundamentals of fluid flow, including the principles of momentum and energy conservation. Forces exerted by jets are discussed, and the theory is applied to propulsion systems. Activities 8, 9 and 10 explore the dynamics of flow in pipes. Methods of analysis, the effects of energy losses and complex pipe arrangements are all explained. Activity 11 applies the principles learned to flow in open channels. Activities 12 and 13 explore the transfer of energy in pumps and turbines. Activity 14 presents a range of hydraulic systems, which make practical use of the principles learned in the module. Activity 15 introduces the student to dimensional analysis. Various applications of dimensional analysis, including the analysis of models, are discussed.
    [Ver: 1.0.0.0]

    The PLC Technology 1: Fundamentals of Ladder Logic module is the first in a series of four modules that teach about PLC technology. In this module, students learn how to program and use PLCs in industrial applications that require electrical control. The PLC modules feature powerful PLC simulation control software that allows students to program a PLC and simulate industrial applications.

    The module includes the testing of input and output responses to ladder diagrams students program. 

    PLC Technology 1: Fundamentals of Ladder Logic emphasizes the fundamentals of PLC theory and basic programming.

    Cat No. 77-8220-0010

    [Ver: 1.0.0.0]

    In the PLC Technology 2: Advanced Ladder Logic module, you learn how to program and use PLCs in industrial applications that require electrical control. The PLC modules feature software, which allows you to program a PLC and simulate industrial applications. The module includes the testing of input and output responses to ladder diagrams you have programmed. The combination of graphic simulation software with PLC hardware enables you to test and correct control programs both online and offline.

    PLC Technology 2: Advanced Ladder Logic focuses on advanced PLC programming.
    [Ver: 1.0.0.0]

    77-8220-0020

    Students learn how to program and use PLCs in industrial applications that require electrical control. The PLC modules feature software that allows students to program a PLC and simulate industrial applications. The module includes the testing of input and output responses to ladder diagrams programmed by students.

    In PLC Technology 3: PLC-Controlled Pneumatic Systems, students learn how to control pneumatic systems using a PLC. Basic pneumatic terminology is introduced and explained, and the student simulates the operation of pneumatic components.
    [Ver: 1.0.0.0]

    Catalog number: 77-8220-0030

    In PLC Technology 4: PLC-Controlled Hydraulic Systems, students learn how to control hydraulic systems using a PLC. Basic hydraulic terminology is introduced and explained, and the student simulates the operation of hydraulic components.
    [Ver: 1.0.0.0]

    Catalog Number: 77-8220-0040

    This 6-hour course is designed for students who already have knowledge in basic PLC programming. The supplement introduces the students to the Siemens PLC system with the S7-1200 hardware and STEP 7 TIA Portal software. 

    Cat. number: 77-8210-0050 


    [Ver: 1.0.0.0]

    The PLC Technology 1: Fundamentals of Ladder Logic module is the first in a series of four modules that teach about PLC technology. In this module, students learn how to program and use PLCs in industrial applications that require electrical control. The PLC modules feature powerful PLC simulation control software that allows students to program a PLC and simulate industrial applications.

    The module includes the testing of input and output responses to ladder diagrams students program. The combination of graphic simulation software with PLC virtual hardware enables students to test and correct control programs both online and offline.

    PLC Technology 1: Fundamentals of Ladder Logic emphasizes the fundamentals of PLC theory and basic programming.
    [Ver: 1.0.0.1]

    In the PLC Technology 2: Advanced Ladder Logic module, you learn how to program and use PLCs in industrial applications that require electrical control. The PLC modules feature software, which allows you to program a PLC and simulate industrial applications. The module includes the testing of input and output responses to ladder diagrams you have programmed. The combination of graphic simulation software with PLC hardware enables you to test and correct control programs both online and offline.

    PLC Technology 2: Advanced Ladder Logic focuses on advanced PLC programming.
    [Ver: 1.0.0.0]

    77-8210-0020

    Students learn how to program and use PLCs in industrial applications that require electrical control. The PLC modules feature software, which allows students to program a PLC and simulate industrial applications. The module includes the testing of input and output responses to ladder diagrams programmed by students. The combination of graphic simulation software with PLC virtual hardware enables students to test and correct control programs both online and offline.

    In PLC Technology 3: PLC-Controlled Pneumatic Systems, students learn how to control pneumatic systems using a PLC. Basic pneumatic terminology is introduced and explained, and the student simulates the operation of pneumatic components.
    [Ver: 1.0.0.1]

    Catalog number: 77-8210-0030

    Students learn how to program and use PLCs in industrial applications that require electrical control. The PLC modules feature software, which allows students to program a PLC and simulate industrial applications. The module includes the testing of input and output responses to ladder diagrams programmed by students. The combination of graphic simulation software with PLC virtual hardware enables students to test and correct control programs both online and offline.

    In PLC Technology 4: PLC-Controlled Hydraulic Systems, students learn how to control hydraulic systems using a PLC. Basic hydraulic terminology is introduced and explained, and the student simulates the operation of hydraulic components.
    [Ver: 1.0.0.0]

    Catalog Number: 77-8210-0040

    The Sensor Technology module introduces students to the use and applications of sensor technology in manufacturing processes. In the Sensor Technology module, the student designs and assembles basic control circuits, to activate and control both analog and digital sensors on a training panel in various configurations.

    Students experiment with a variety of elements for triggering the sensors, such as a light source, a light filter, an optic fiber cable, magnets, an air pump, and aluminum, iron, wood, and plastic blocks. Students connect different components, change physical parameters and measure sensor response.
    [Ver: 1.0.1.1]

    The virtual Machine Vision and Quality Control course uses Cognex In-Sight Explorer software to teach machine vision concepts. Students learn to operate and program the technology and connect emulated cameras to provide the image interpretation and visual feedback needed for vision systems.


    Catalog number: 77-3030-0000

    Version: 1.0.0.0

    Machine Vision and Quality Control (Lab Course #2) with the Cognex In-Sight 2000 builds on the content of the first lab course and emphasizes vision systems in automated production lines and the vision software tools that aid in the inspection of parts, products, and packaging. 

    Catalog number:77-8089-0000


    Version: 1.0.1.0

    The Machine Vision and Quality Control lab course uses a Cognex Vision Sensor and Cognex In-Sight Explorer software with the embedded image processing engine in the camera. Students learn to operate and program the technology and connect cameras and computers to provide the image interpretation and visual feedback needed for vision systems. The curriculum provides instruction on the use and setup of the Cognex digital color camera and integration of the vision system into quality control and manufacturing processes.

    Catalog Number: 77-8087-0000

    [Ver: 1.0.2.0]

    Automatic identification systems enable direct entry of data into a computer system, programmable logic controller (PLC) or other microprocessor-controlled device without using a keyboard. AutoID technologies provide a quick, accurate and cost-effective way to track items, collect and enter data, and encode a wide range of information, from a simple detail to comprehensive statistics about an item or person.

    In the Automatic Identification Systems module, students are introduced to the most popular AutoID technologies: bar codes, magnetic stripe cards, smart cards, biometric technologies and radio frequency (RF). Students observe how different automatic identification technologies offer different solutions to data collection and storage problems. Students determine the advantages/disadvantages, features and typical applications of each technology.
    [Ver: 1.0.0.0]

    Electrical Circuits (EA01A) introduces students to fundamental electrical concepts including lockout/tagout and safety, connecting circuits and measuring voltage and current. The skills-based curriculum presents hands-on activities using a digital multimeter and other industrial-grade electrical components mounted on five included Flexponent™ panels which attach to the JobMaster™ Learning Station. Electrical Circuits (EA01A) is the first in the four-course Basic Power Electricity series, which teaches the introductory electrical skills essential for success in automated manufacturing.
    [Ver: 1.0.1.0]